
On Expressiveness and Conciseness of Data Graphics Templates
Romain Vuillemot∗

Université de Lyon

THE VISTK TOOLKIT

VISTK is an open-source1 JavaScript toolkit which allows the cre-
ation of standard charts such as scatterplots, bar charts, node-link
diagrams and treemaps (see appendix for a more comprehensive list
and illustrations). VISTK is intended to non-expert programmers,
by easing charts creation using pre-defined templates. They consist
in an abstraction layer over D3 [2] that draws charts on web pages
using low-level manipulation of SVG graphical elements (rectan-
gles, circles, etc.). Templates provide default configurations, for
marks position (scales, etc.) and visual properties (color, fill, etc.),
to generate charts. Following D3’s recommendations, templates
can be customized using Web Standards using CSS for aesthetics
and JavaScript for interaction.

Our design focus with VISTK is on the templates options in or-
der to find a sweet spot between expressiveness (the number of
charts that can be built) and code conciseness (the number of line
of codes required to draw and customize charts). From our ob-
servations, research prototypes such as Protovis [1] and the most
popular D3 visualization libraries (e.g NVD3.JS, C3.JS, HIGH-
CHART.JS) also have a similar approach using templates description
which allow charts composition, customization and interaction us-
ing options or by adding custom JavaScript code. Vega [4] (VISTK
was developed at the same time as Voyageur) does not use tem-
plates but exposes charts configuration as an API with parameters
following a grammar of graphics. All those approaches (including
VISTK) to encapsulate code into APIs (Application Programming
Interface) aim at allowing easier access to data or features, are stan-
dard in software architecture, but novel when it comes to captures
visual design and interaction.

Our approach with VISTK is a bit singular as we also aimed
at providing shared building blocks across charts, for configuration
consistency and re-usability. The building blocks of VISTK rely on
the following assumptions:

1. A dataset is composed of items: examples of items are
countries, sport teams, stock market companies, etc., and their prop-
erties are attributes. In the code snippet below, we show items–
which are countries have GDP per capita attributes–that appear as
series of transactional data. The complete dataset has about 200
items, and values may vary over time.

[{country: USA, gdppc: 53,041.98, year: 2013},
{country: FRA, gdppc: 42,503.30, year: 2013}

...
]

2. A chart is the mapping of items to graphical marks:
which means that each item will be represented as one primary
mark (circle, rectangle, text label, etc.), and its attributes will be
mapped to visual properties such as position and color, for instance.
Items can results as the composition of multiple marks, such as
combining text labels with circles, for instance.

∗e-mail: romain.vuillemot@gmail.com

1https://github.com/cid-harvard/vis-toolkit under
a MIT-Licence

Figure 1: Dot plot chart with default configuration values.

3. A chart template should capture the minimal chart set-
tings: which means a configuration should remain as simple as
possible. But in the meantime, should allow flexibility to change
graphical marks types and visual properties mapping to attributes.
Default values should be informed and should allow the chart to be
created despite missing properties. The code snippet below shows
the internal configuration of VISTK for a dot plot chart template
(shown on Figure 1).

vars.default_params["dotplot"] = function(scope){

var params = {};

params.x_scale = [{
func: d3.scale.linear()

}];

params.y_scale = [{ }];

params.items = [{
marks: [{

type: "circle",
}, {

type: "text",
rotate: "-90"

}]
}];

The important part of the code snippet above is the
params.items object that defines the mapping between how
items are represented as graphical marks (here, circle and text).
This snipped is an internal JavaScript Object that can be overrid-
den later on for customization using the VISTK API. The API call
to create (and customize) the dot plot from the HTML page is as
follows (and result in the same dot plot as on Figure 1):

var data = [{__id: "A"}, {__id: "B"}, {__id: "C"}...

var visualization = vistk.viz()
.params({

dev: true,
data: data,
width: 800,
height: 500,
type: "dotplot",
var_x: "__id",
var_y: function() { return this.height/2; },
var_text: "__value"

});

d3.select("#viz").call(visualization);

https://github.com/cid-harvard/vis-toolkit


Figure 2: Dotplot chart template with customization.

In the above code snippets, items are mapped to circles (which
is the mark set by the template). To customize this mapping, and
use red rotated rectangles instead of circles, as on figure 2, here are
the changes to be made to the API call:

items: [{
attr: "name",
marks: [{

type: "tick",
rotate: "0"

}, {
type: "diamond",
rotate: "0"

}, {
type: "text",
rotate: "0",
translate: [-10, -30],
text_anchor: "middle"

}]

All the figures provided as appendix allow to grasp the expres-
siveness of VISTK. We noticed some chart configurations had to
be completely rewritten to reach a certain level of customization. A
way to reduce the number of lines of code would be to create classes
of charts, such as vertical and horizontal bar charts, and store them
in separate templates. However, this approach opens the door to a
more complex toolkit architecture with inheritances, and develop-
ers will have to browse a longer catalog of charts templates to figure
out which one to begin with.

BUILT-IN FUNCTIONS AND APPLICATIONS

VISTK also contains many built-in functions. Most are related to
data wrangling (dealing with missing values, re-shaping dataset, ..)
but also to make it convenient to aggregate, filter, update over time.
Such functions sometimes generate new data. For instance, if coun-
tries are aggregated as continents, continents become items that can
be mapped to a graphical mark. See figure 9 where continents ap-
pear on a chart, using countries-level data for each pie chart.

VISTK is currently used in real-life production websites, such as
the The Colombian Atlas of Economic Complexity2, its variations to
other countries (Mexico3, Peru4) and a couple of standalone experi-
ments such as onboarding for complex economic concepts5 or press
release6. It is integrated as an Ember.js7 component which code is
also open source8.

LIMITS OF THE VISTK
The main limit of VISTK was the limited size of the community
around the toolkit that did not allow particular feedback on its ease
of use and flexibility. While we managed to fulfill all our needs, we
did not collect any qualitative claims on the toolkit’s expressive-
ness, as it was most built and updated with specific charts in mind.

2http://datlascolombia.com/
3http://complejidad.datos.gob.mx/
4http://growthlab.cid.harvard.edu/peru-atlas
5https://cid-harvard.github.io/atlas-exports-quality/colombia.html
6http://atlas.cid.harvard.edu/rankings/growth-predictions/
7http://emberjs.com/
8https://github.com/cid-harvard/atlas-subnational-frontend/

The toolkit being developed by the author of this article9, all the
knowledge and competences in the design process have not been
shared or structured in a way to seamlessly pass on the baton.

Another limit is the lack of support for charts templates param-
eters exploration. Indeed, the process of creating charts is a lot
of trial and errors. In a previous work, we have been working on
a toolkit with Visual Sedimentation [3], which was configured us-
ing quantitative values (pace of updates, pace of aggregation, etc.)
which has the main benefits of always resulting in a chart. And
unexpected results allowed creative exploration, while with VISTK
and other toolkits there is no room for error.

QUESTIONS AND DISCUSSION FOR THE WORKSHOP

As discussed previously discussed in this article, our main focus is
on data graphics templates configurations and customization. We
are particularly interested in how they can be expressive, while re-
maining concise. There are other questions we would like to discuss
during the workshop:
• Charts template taxonomy: as far as we know, there is no

official list of chart, despite many attempts. It is crucial to
reach a consensus on charts naming, description, and geneal-
ogy. This would greatly ease the tools and toolkits compar-
isons, and make on boarding with new tools faster.

• Comparison: we need metrics to compare charts with each
others, especially to measure expressiveness and conciseness
(e.g. which charts are supported, lines of codes required to
customize, default values, ..).

• From modules to components: modules are reusable pieces
of code; and components are reusable parts of graphics meant
to be combined together. There should be more efforts put
on the later, while the former is often used as it is related to
well-known programming paradigms.

• Performance: is key to successful for adoptions by a com-
munity of users and developers. VISTK has been heavily
tweaked to load, run, animate smoothly when integrated as a
component. But a general-purpose toolkit would not be pos-
sible to optimize that easily without knowing its end goal.

• The last mile: building tool tips, making sure charts are
cross-browser compatible, code testing, continuous deploy-
ment, user feedback, documentations, etc. are sometimes pure
engineering effort, but are the extra layers of polish needed for
engaging and professional-looking result.

ACKNOWLEDGEMENTS

The author would like to thank Quinn Lee, Mali Akmanalp, Gus
Wezerek and Greg Shapiro who helped improving and integrating
VisTK to the Atlas websites and experiments.

REFERENCES

[1] M. Bostock and J. Heer. Protovis: A graphical toolkit for visual-
ization. IEEE transactions on visualization and computer graphics,
15(6):1121–1128, 2009.

[2] M. Bostock, V. Ogievetsky, and J. Heer. D3 Data-Driven Docu-
ments. IEEE Transactions on Visualization and Computer Graphics,
17(12):2301–2309, Dec. 2011.

[3] S. Huron, R. Vuillemot, and J.-D. Fekete. Visual sedimentation. IEEE
Transactions on Visualization and Computer Graphics, 19(12):2446–
2455, 2013.

[4] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe,
and J. Heer. Voyager: Exploratory analysis via faceted browsing of vi-
sualization recommendations. IEEE transactions on visualization and
computer graphics, 22(1):649–658, 2016.

9Which means VISTK bus factor is 1 https://en.wikipedia.
org/wiki/Bus_factor

https://en.wikipedia.org/wiki/Bus_factor
https://en.wikipedia.org/wiki/Bus_factor


Figure 3: Multiple coordinated dot plots https://github.com/cid-harvard/atlas-subnational-frontend/blob/
3b3c10609699bed5e7067d147a7a8a627c980f63/app/components/vistk-dotplot.js

https://github.com/cid-harvard/atlas-subnational-frontend/blob/3b3c10609699bed5e7067d147a7a8a627c980f63/app/components/vistk-dotplot.js
https://github.com/cid-harvard/atlas-subnational-frontend/blob/3b3c10609699bed5e7067d147a7a8a627c980f63/app/components/vistk-dotplot.js


Figure 4: Scatterplot https://github.com/cid-harvard/atlas-subnational-frontend/blob/
3b3c10609699bed5e7067d147a7a8a627c980f63/app/components/vistk-scatterplot.js

https://github.com/cid-harvard/atlas-subnational-frontend/blob/3b3c10609699bed5e7067d147a7a8a627c980f63/app/components/vistk-scatterplot.js
https://github.com/cid-harvard/atlas-subnational-frontend/blob/3b3c10609699bed5e7067d147a7a8a627c980f63/app/components/vistk-scatterplot.js


Figure 5: Categorical scatterplot https://github.com/cid-harvard/vis-toolkit/blob/master/src/visualizations/
caterplot_time.js)

https://github.com/cid-harvard/vis-toolkit/blob/master/src/visualizations/caterplot_time.js
https://github.com/cid-harvard/vis-toolkit/blob/master/src/visualizations/caterplot_time.js


Figure 6: Geo map and legend https://github.com/cid-harvard/vis-toolkit/blob/master/examples/geomap_legend_
color.html

https://github.com/cid-harvard/vis-toolkit/blob/master/examples/geomap_legend_color.html
https://github.com/cid-harvard/vis-toolkit/blob/master/examples/geomap_legend_color.html


Figure 7: Line chart https://github.com/cid-harvard/vis-toolkit/blob/master/examples/linechart_eci_rankings.
html

https://github.com/cid-harvard/vis-toolkit/blob/master/examples/linechart_eci_rankings.html
https://github.com/cid-harvard/vis-toolkit/blob/master/examples/linechart_eci_rankings.html


Figure 8: Treemap https://github.com/cid-harvard/atlas-subnational-frontend/blob/
3b3c10609699bed5e7067d147a7a8a627c980f63/app/components/vistk-treemap.js

https://github.com/cid-harvard/atlas-subnational-frontend/blob/3b3c10609699bed5e7067d147a7a8a627c980f63/app/components/vistk-treemap.js
https://github.com/cid-harvard/atlas-subnational-frontend/blob/3b3c10609699bed5e7067d147a7a8a627c980f63/app/components/vistk-treemap.js


Figure 9: Pie scatter charts. https://github.com/cid-harvard/vis-toolkit/blob/master/examples/piechart_continent.
html

https://github.com/cid-harvard/vis-toolkit/blob/master/examples/piechart_continent.html
https://github.com/cid-harvard/vis-toolkit/blob/master/examples/piechart_continent.html

