
Glitches as a Generative Design Process
Romain Vuillemot∗

Univ Lyon, École Centrale
de Lyon, CNRS UMR5205,

LIRIS, F-69134, France.

Samuel Huron†
Télécom ParisTech, CNRS
i3 (UMR 9217), Université

Paris-Saclay

ABSTRACT

Glitches—unexpected coding errors—are often discarded as they
are considered as design failures. This is surprising as they relent-
lessly flourish on the web, due the interest their aesthetic triggers.
In this paper, we report a preliminary work that aims at understand-
ing glitches in the context of information visualization. We first
conducted an empirical study by collecting glitches examples on
social media that we grouped by visual and semantic similarities.
Glitches descriptions by their creators allowed us to grasp the in-
terest behind sharing such a failure. However, understanding the
(unattended) cause of glitches remains usually difficult as it also
remains unknown for their creators; nonetheless we reverse engi-
neered some of them in a synthetic manner. We discuss glitches
expressive possibilities, which can be considered as a generative
design method for visualization, and suggest including them in de-
sign studies as a way to better document design processes.

1 INTRODUCTION

Accidents are an integral part of discovery. Unexpected errors are
widespread in science in general (e.g. serendipity [27]) but also in
any creation process. Artists rarely produce what they initially in-
tended to do: everything gets changed and shifted from the initial
goal. In craft domains, errors have a major impact on the result
and the process. For instance, a sculptor could not undo a mark en-
graved during his sculpting process. Otherwise he has to imagine a
way to gain benefit of this error, or to redo his work from scratch
or to disguise it. Multiple artists chose to use the unexpected and
randomness aspects of the crafting execution as a support of their
creation process. Jackson Pollock was painting by moving a drip-
ping paintbrush on top of the canvas. This way, he could express
his feeling through an action that can lead to both controlled and
unexpected results, more than planning a representation ahead.

Some entire movements in art history actually gained benefits
form unexpected and random elements along the creative process:
abstract expressionism, surrealism [11], dadaism and cubism [5],
among others. After the Second World War, artists applied a similar
approach to various medium and domains. Nam June Paik created
installations with analogical video Larsen effect: a camera filming
its own video output to generate unexpected effects. Dan Graham
used the introduction of computers, and digital tools opened up new
directions to generate random errors, sometime unexpectedly, and
sometimes purposefully.

In computer sciences, a glitch is a code that runs but with
a bizarre visual output that is partially or completely random.
Glitches can be found in various digital domains which goal is not
to generate designs. In video games, glitches are when the game
does not behave as programmers wanted to, and allows players to
cheat as it provides an unfair advantage. There is actually an ac-
tivity aimed at finding flaws and exploiting them and referred to

∗e-mail: romain@vuillemot.net
†e-mail: samuel.huron@cybunk.com

Figure 1: Example of glitch in the parameter space of Visual Sed-
imentation [13] that resulted in an overflowing bar chart. Such an
apparently buggy visualization accually became pointful: the chart
shows dramatic increase of populations (individuals are represented
as dots and grouped into bars) that have limited space capacity.

as glitching. In electronics, glitches occur when some failing elec-
tronic device keep having a working visual output that may gener-
ate interesting combinations of pixels. Electronics may crash but
is often more robust than coding and results in more diverse visual
outputs.

The early version of the web (1.0) was also an endless source
of glitches due to the medium: slow internet connection, low-
resolution and small color palettes on CRT displays, and the design
of files format (such as GIF, which are still being used today [17])
allow progressive loading and rendering of images causing some
(temporary) distortions. With overall technical improvements of
web connections and display systems, glitches became generated
either by nostalgia of those times (some examples can be found in
the World Wide Wrong exhibition [16] in 2005), to tame anxiety
caused by the raising presence of technology [21], or by fiddling
with systems that have become too complex [23]. Lately, some
artists specifically claimed doing accidental art by generating bugs
into digital files [1]. In this movement we can identify different
techniques, such as data bending [10] –which is manipulating the
data into a media with a text editor in order to generate distortions
in the file rendering– playing with compression artifact, and data
moshing [6].

However, errors have received little attention in the context of
information visualization. Information visualization—the map-
ping of abstract data to graphical marks and their property, to en-
hance humans cognition—does not provide an obvious ground for
any random process as it is traditionally viewed as an analytical
pipeline [14] (Figure 3), which goal is to generate faithful presen-
tations and accurate interpretations by the human. From our expe-
rience, we have witnessed interesting randomness in some of our
previous work Visual Sedimentation [13] as we visually searched
for interesting parameters combination to generate new charts (Fig-
ure 1): a simple, standard bar chart becomes interesting and im-
pactful only once it was malfunctioning due to a slight change in its
configuration parameters.

It seems errors are actually a fundamental part of visualization,
but we are currently only taught to hide and correct them. Expert
programmer and visualization designer Mike Bostock stated in [24]
[..] Design has its tendency to be capricious. Which is that some
day you fell you are a master of design and things are going pretty

Figure 2: Generating solutions with a parametric design process
(adapted from [3]) can be summarized in three steps: choice of pa-
rameters; combination of those parameters; validation of the output.

well. And then other days and most days you tend to feel more like
a neophyte where you are not really sure what’s going wrong how
to solve your problems. Why everything is so hard. [..] Quoting a
Tweet by Paul Ford that summarizes his sentiments One common-
ality between writing and coding is that everything you do is in a
nightmarish state of total failure until the moment it is not. One
actually needs to explore things that do not work to find things that
work. Mistakes are unavoidable.

This work aims at investigating how unexpected coding errors–
glitches–can become an act of discovery rather than only a mistake.
As far as we know, this is the very first attempt to explore glitches in
the context of information visualization, to provide categories and
analyze how they can be combined with creative practices. Such an
investigation continues previous efforts that aim at bridging multi-
ple fields together [19], such as arts and visualization, to provide
more exchange of ideas.

2 PARAMETRIC DESIGN PROCESS AND GLITCHES GENERA-
TION

Glitches have strong ties with the field of parametric design [29, 3]
which is dedicated to discover and validate unexpected results from
various types of visual or audio outputs, as well as from physical
objects. Parametric design finds applications in many fields, from
art to genetics, where parameters have been identified to be changed
and combined, and finally selected according to an objective crite-
rion. For instance, in architecture, buildings shapes can be defined
by a set of variables (height, number of floors, etc.) and their rela-
tion. Thus, building shapes variations can be explored by changing
those variables, and novel buildings can be selected by criteria such
as innovation or optimality [26]. This parametric design process is
best summarized by [3] on Figure 2.

Regardless its application domain, parametric design requires
first to identify a parametric space which refers to all the input
variables that can be changed to generate variations. The second
step is the combination of parameters. This is where randomness
plays an important role to fetch permutations that no one has prob-
ably thought of beforehand. However, due to the combinatoric of
all possible permutations, only a couple of subsets can usually be
explored. This is why glitches are particularly interesting: the are
only minor malfunction, mishap, or technical problem [2], result-
ing in small and controlled changes, and thus prevents exploring
unkown areas. They are only variations of known and (normally)
working points in the space. The third and final step is selection

Figure 3: Interaction model (adapted from [14]) provides a list of pa-
rameters for visualizations variations.

according to an objective function which allows to consider param-
eters permutation as valid. The function usually is either qualita-
tive, and can be automated, but can also be quantitative, and then
requires human judgement to accept or reject it.

Most of the glitches we presented in the introduction section
come from systems that can be described with a parameter space,
which captures the complete digital or electronic processing, from
capture to perception (e.g. video glitches impact the rendering part
of the video, game glitches impact the scene graph of the video
game program). In the context of information visualisation, we
suggest to use the interaction model proposed in [14] (Figure 3)
as parameter space. The model is a series of sequential steps, from
raw data to information, that capture all the transformation and con-
sequently all the possible sources of error. Thus, it provides us with
a controlled and limited set of parameters that we can use to under-
stand glitches. This complies with the definition of glitches as being
post-procedural [22], as a break from a procedural flow. Still, a vi-
sualization glitch will have other possible reasons to exist outside
this model, and can impact other modalities (audio, etc.). Finally,
as most of the visualizations, only a qualitative judgement will tell
if the glitch is valid or not in this context.

3 GLITCHES COLLECTION

To better grasp glitches design space and opportunities for visual-
ization, a naive approach would be to randomly combine all pa-
rameters from Figure 3 (e.g. visual mapping of graphical marks,
properties, scales, points of view, etc.) and inspect outputs. This
approach is not realistic, as it would result in a too important com-
binatoric problem. Thus we adopt a retrospective approach, by dis-
secting already created glitches by programmers or artists, in the
context of information visualization.

Thankfully, glitches draw increasing scrutiny thanks to web tech-
nologies and social media; it is reflected by the growing number of
collections available online. Among them, two very active sources
of glitches: the first is a Tumblr blog 1 where R [28] developers

1http://accidental-art.tumblr.com/archive

Figure 4: An excessive number of text labels creates new shapes,
and emphasizes existing contours.

Figure 5: Simple color palettes and scribble-like shapes are consid-
ered as glitches as they seem to be hand-drawn by a child.

submit screenshots of their glitches with some comments (intent,
dataset, tools); the second is a Twitter hashtag 2 that D3 [4] devel-
opers use to also share screenshots along with a Tweet. The Tumblr
is curated by moderators, while the Twitter feed is not.

We extracted more than 164 posts from the Tumblr with the old-
est one dating back to October 28, 2013. While we were able to ex-
tract all the Tumblr posts, the Twitter’s search API limited us to pro-
grammatically extract 250 from the Twitter hashtag. We ended up
with a database of 414 glitches that we did not clean as we wanted
to look at all the results in an exploratory manner.The collection
and the scripts to create it are available as supplemental material3.

4 COLLECTION ANALYSIS

We now report our analysis of visualization glitches based on the
previously collected samples. This is a preliminary and exploratory
effort due to the lack of comprehensive and structured collection.
This led us to use a qualitative approach, rather than quantitative
coding, to identify patterns. For each glitch, we asked ourselves
simple questions such as what causes the perception of a glitch?
Why is the glitch interesting? How the glitch was made? We did
our best to answer those questions using the information visual-
ization reference model [14], and inferred authors intents since the
rationale behind the glitch was not always available.

2#d3brokeandmadeart
3https://github.com/romsson/glitches-dataviz-collection

Figure 6: Non visualization-related shapes are perceived instead of
a chart, while using the same graphical marks as building blocks.

Figure 7: Patterns appear due to the symetrical layouts and well or-
ganized graphical elements.

”Text labeling gone wrong”
Many glitches originate due to text labeling errors (Figure 4) by
misplacement, overflow or just because too numerous. Such errors
occur because labels are attached to each graphical mark, instead
of only a handful. By consequence, showing all labels at once gen-
erates visual black blobs. Those blobs often create an additional
layer of graphical marks, which turns the chart in an unexpected
shape or emphasizes existing contours. The effect of this particular
text glitch is reinforced by our ability to quickly notice and read
textual elements, and thus detect any textual randomness immedi-
ately. Those glitches also emphasize how labeling is difficult and
why interactive techniques, such as eccentric labels [9], should be
implemented to only show labels on demand and within a limited
perimeter.

”My kids could do that!”
Another frequent cause of glitches is when the result seems too easy
(Figure 5). We found charts that creators connected to a children’s
artwork rather than an actual data-driven plot, and with such sub-

Figure 8: Random noise are a dense display of multiple elements
without any particular organization.

Figure 9: Example of glitches considered as artistic artworks or em-
blematic of a trend.

titles as ”My kids could do that!”, ”coulda made it in 10 seconds
with a red pen.” or ”A PMT trace when the axes don’t cooperate
and MATLAB acts like a child with a 64-pack of crayons?” Despite
such glitches are perceived as malfunctioning, they can actually be
faithful to the data: a similar and very accurate visualization, such
as ZIPScribble maps [18] provides the same reaction. While ZIP-
Scribble connects all ZIP codes in the US, it is locally very ran-
dom, but some emerging grids show the underlying structure of the
dataset. Both ZIPScribble and glitches share the same curious in-
terpretation due to the use of random trajectories combined with
simple color palettes.

”I see something”
Some creators, instead of perceiving a visualization, noticed a shape
that has a different, non visualization-related meaning (Figure 6).
This shape emerged with the same building block as a chart (graph-
ical marks, colors, position), but mentally formed due to its global
resemblance to a familiar object or subject. ”Accidentally got the
Eiffel Tower”, ”It’s a dolphine”, ”Accidentally drew a moon.”,
”Wanted to make sure an amplitude envelope shaping function was
working correctly, so I fed it extreme input arguments, and it gave
me a kiss.”, ”Was trying to mess with projections in ggplot. Got a
psychadelic doughnut instead! ”, ”It ought to be a social network
visualization... Looks like a... flower?”, ”was trying to overlay

Figure 10: Stacked shapes usually are reported as plain mistakes,
instead of artwork or anything able to be identified.

Figure 11: Stories are told by creators to explain relatively complex
malformed visual output.

some histograms and ended up with something resembling stained-
glass windows.”. It sometimes goes in (too much) depth with ex-
tra context ”It’s supposed to be coefficients of variation by sample
mean. Instead it looks like I photocopied my butt.”.

Interestingly, such shapes are relatively far-fetched, but still
would not have required any skill to be drawn on purpose. Also,
such shapes are relatively non-ambiguous, and are immediately dis-
tinguishable. In both cases, the interaction model tells us all those
interpretations occur at the end of the pipeline, once the user has
perceived the visualization and then mentally decodes it, but in an
unexpected way. This was also the case in the previous section
were perfectly fine visualizations have turned into a glitch due to its
association with some prior and non-related knowledge.

”Patterns and random noise”
On the other side of the visual significance spectrum, creators can
be surprised by the apparently non-informative chart, resulting for
instance from symetric display of elements (Figure 7) ”Check out
those moire patterns!”, ”Contour plot of random repetitive noise”,
”I was just fiddling with a colour scale the easiest way I could think
of and it produced quite a lovely abstract image.”. Some completely

Figure 12: 3D printers can also generate glitches with wrong assem-
bly of physical elements.

random noise patterns (Figure 8) have also been reported but usu-
ally without much comment. We assumed such glitches are self-
explanatory, while it is still unclear for us why creators are confident
that something wrong happened. From a visualization perspective,
there is obviously some over plotting and clutter, but creators did
not comment any in those terms.

”Artistic reminiscence”
Figure 9 shows glitches considered as artistic artworks or emblem-
atic of a trend. ”Tried to plot points relative to expression level.
The output is aRt.”, ”Plotting data with incorrect spatial parame-
ters lead to this very modern piece of art.”, ”a time-series plot led to
minimalism in black and blue” or ”Mistaking ‘cex’ for ‘pch’ leads
to a nice example of minimalism”, ”not quite mondrian, but i’m
trying”. There was also additional details on the context in which
such art should be displayed ”printed on a 1 x 2 m canvas, “the
map” would surely make a nice wall decoration in a Le Corbusier
style house.”, ”The bump chart of Dorian Gray, now on display at
the Museum of Modern” or just ”a great desktop image!”.

It is interesting to note that not all glitches have a high aes-
thetic value. ”A beautiful error”, ”little fancier”, ”fun to look
at!”. Random glitches can also be seen as what they are: random
glitches. Many glitches are shapes stacked on top of each others
due to issues with layout or opacity (Figure 10), and are explicitly
reported as plain mistakes. The frontier between visualization and
art is even challenged ”Still unclear of what’s art? On the left is
#d3brokeandmadeart. On the right is a perfectly reasonable bump
chart”.

”Little stories”
A series of glitches without any particular aesthetic (Figure 11) got
some interesting comments: those were little stories such as ”circle
pack got infected by one of those protozoa that make snails com-
mit suicide”, ”It’s a blackout in the 19th century.”, ”revenge of
the nodes”, ”According to this chart, we will reach peak dataviz
well before peak oil, peak coal and peak hype”. Those seem to be
very personal as they would be difficult to guess without any com-
ment from its creator. Those glitches come from to the author’s
mental model when conceiving the visualization, rather than objec-
tive visual criteria or a shared background. This contrasts with the
shapes in a previous section that were very obvious to guess and
non-ambiguous.

5 GLITCHES REVERSE ENGINEERING

In this section, we create coding errors–on purpose–which visual
results can be assimilated to glitches. This seems to be in conflict
with the essence of a glitch, which should be unexpected: ”One
does not create a glitch, but triggers it” [20]. However, our goal
is pedagogical to explain which parts of a program may lead to vi-
sual disfunctions, without breaking the whole program. We provide
code snippets to exemplify simple, yet frequent glitches in the con-
text of D3 [4] programming with <svg> rendering.

Inadvertent use of default values. One of the most frequent
origins of errors is forgetting to change default values: those val-
ues are forced by the system if they have not been set in the code
beforehand. Such values are automatically set to guaranty a vi-
sual output that works. Those values can be basic (e.g. for color:
black, white) or informed (e.g. color scales [12]). Since D3 visu-
alizations often use SVG as the primary rendering mechanism, it
relies upon SVG default values. Thus, any plot of elements such as
a <path> comes with default values for attributes such as color,
stroke width, fill, among other attributes [25]. The following code
snippet is the correct code to prevent the default <path> fill which
is black (fill: black;) when one wants to draw a line and re-
move the fill (fill: none;). This code should be included in
the style sheet of the HTML page. It exemplifies glitches grouped
on Figure 9.

<style>
/* thin blue line without any area fill */
path {
stroke: steelblue;
stroke-width: 1;
fill: none; /* default is black */
}
</style>

Keep drawing while it should have stopped. Most of the un-
expected scribble charts on Figure 5 are due to a common error in
D3 code structure when using the .data() binding attribute. In-
deed, the attributes usually requires input data an array of arrays
([[..], [..], [..]]) to draw separate lines; While it is a
common error to pass only a single flat array ([.., .., ..]).
The visual result is globally correct, but instead of segments, a con-
tinuous <path> is drawn. This is very much similar as drawing
separate lines on paper, but without lifting the pen between lines.

<style>
/* Oringinal dataset [[1, 2], [3, 4]] */
.data([1, 2, 3, 4])
...
</style>

6 MORE GLITCHING

There are many other types of coding errors that can lead to
glitches, than the ones we have collected, discussed or reverse en-
gineered. As we said earlier, the interaction model [14] can be seen
as a parameter space where errors may occur at any transformation
step, before and after perception. For instance at the processed data
and data filtering leve, an error can happen by the distortion or the
miscoding of the original dataset. This could be due to missing val-
ues, outliers and inconsistencies [7], or other factors. At the level of
abstract visual form, errors appear with the miscoding of the rules
of classical chart like changing angles of the bars of a bar chart, or
mapping the values to the wrong visual variables. At the level of the
visual presentation, glitches could appear on labels like the text la-
beling category. Finally, the physical presentation level could also
be a place of glitches by distortion of the rendering process such
as the way standard glitches are generated with their unique visual
aesthetic [22, 8, 16, 17, 5].

Finally, there is also an important source of glitches when visu-
alizations are physically rendered. Figure 12 shows that data phys-
icalization [15] is already a source of glitches for 3D printed ob-
jects 4. In general, physical objects provide more organic changes,
which can easily be manipulated by humans, and trigger their cu-
riosity. The physical world could be a source of inspiration to iden-
tify charts parameters and change them, similar to our earlier Visual

4https://www.flickr.com/groups/3d-print-failures/pool/

Sedimentation [13] bar chart example, for the following reason:
changing physical parameters always results in an errors that can
be interpreted as a glitch. The reason being that the physical world
has few parameters, mostly gravity and material properties, and er-
rors usually mean just collapsed or mishaped objects. This contrasts
with changing the visualization reference models parameters—such
as performing standard data bending—which can easily break ev-
erything and result in no output at all.

7 CONCLUSION AND PERSPECTIVES

We tend to only present polished end results, discarding intermedi-
ary steps. This paper shows that such steps–that we referred to as
glitches–should be captured, saved and inspected, to become part of
the design process. Furthermore, by sharing them, they could open
up new creative spaces that would emerge in a collective manner.

From our preliminary observations of multiple glitches collec-
tions, we envision a huge educational potential. Indeed, by show-
ing edge cases of visualizations, one can visually explain why best
practices exist by illustrate them with counter-examples. For in-
stance, failed labeling shows some clutters that impair readability,
and thus illustrates why it should be carefully designed. It will also
give confidence to novices by showing that everyone struggles with
design and programming, even experts. This is best said by the
following Tweet from our collection of glitches ”makes me feel so
much better about my own experiences with d3”.

Our exploratory work provides a first glance to understand the
type of errors that could be interpreted as glitches, but their reverse
engineering remains difficult and needs more research. We call
for an effort to better support the identification and reflection on
glitches during design and programming phases. In our collection
we had a Tweet saying ”I don’t even know how to reproduce it”.
Identifying and tracking glitches provenance could provide many
benefits. First, to better be able to dissect, reflect and understand
them. Second, to contextualize them as they usually are only an in-
termediate step that is interesting if the end goal is known. Glitches
could even be used as bookmarks of an interesting step that eventu-
ally was pivotal in the final design decisions.

Further work will be needed to systematically collect, structure
and expand glitches collections. This will allow assessing how rep-
resentative the collection we used is of the whole glitches design
space, and allow to focus on missing areas. While we have only
used two structured collections, we could expand our glitches port-
folio by crawling the web using keywords such as glitches errors,
mistakes, and then by using errors synonyms unintentional, acci-
dental, aleatory to cast a broader net. Also, while we have seen
animated glitches we have discarded them from our exploratory
analysis, but they provide very interesting and captivating behav-
iors.

There are some remaining questions we still wonder and would
like to discuss during the conference: why glitches play with our
natural curiosity to explore visual stimuli? Why and how people
engage in (not) sharing their failure? Why people find beauty in
mistakes? What happens in this space when glitching is an inten-
tional technique rather than an accident? Can glitching provide a
way for critical visualization to emerge? Could it be used to create
”an unexpected moment in a system that calls attention to that sys-
tem, and perhaps even leads us to notice aspects of that system that
might otherwise go unnoticed”[17]?

ACKNOWLEDGEMENTS

We would like to thank the inititors of both the accidental-art Tum-
blr (@kara woo and @ErikaMudrak) and the #d3brokeandmadeart
hashtag on Twitter (@Elijah Meeks) as well as the contributors to
both of those excellent publicly available collections of glitches.
We also thank the reviewers for their insightful feedback and refer-
ences on glitch art during the review process.

REFERENCES

[1] The art of glitch. Pbs documentary, 2012.
[2] The free dictionary. Glitches, 2016.
[3] H. Bohnacker, B. Gro\s s, J. Laub, and C. Lazzeroni. Generative

gestaltung. Verlag Hermann Schmidt, 4, 2009.
[4] M. Bostock, V. Ogievetsky, and J. Heer. D3; Data-Driven Docu-

ments. IEEE Transactions on Visualization and Computer Graphics,
17(12):2301–2309, Dec. 2011.

[5] N. Briz. Glitch art historie [s].
[6] W. Brown and M. Kutty. Datamoshing and the emergence of

digital complexity from digital chaos. Convergence: The Inter-
national Journal of Research into New Media Technologies, page
1354856511433683, 2012.

[7] T. Dasu. Data Glitches: Monsters in Your Data. In S. Sadiq, editor,
Handbook of Data Quality, pages 163–178. Springer Berlin Heidel-
berg, 2013. DOI: 10.1007/978-3-642-36257-6 8.

[8] E. den Heijer. Evolving glitch art. In International Conference on
Evolutionary and Biologically Inspired Music and Art, pages 109–
120. Springer, 2013.

[9] J.-D. Fekete and C. Plaisant. Excentric Labeling: Dynamic Neighbor-
hood Labeling for Data Visualization. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’99, pages
512–519, New York, NY, USA, 1999. ACM.

[10] D. Geere. Glitch art created by’databending’. Wired Magazine, page
118, 2010.

[11] M. Germen. Inadvertent-ars accidentalis. 2008.
[12] M. Harrower and C. A. Brewer. Colorbrewer. org: an online tool for

selecting colour schemes for maps. The Cartographic Journal, 2013.
[13] S. Huron, R. Vuillemot, and J. D. Fekete. Visual Sedimentation. IEEE

Transactions on Visualization and Computer Graphics, 19(12):2446–
2455, Dec. 2013.

[14] Y. Jansen and P. Dragicevic. An Interaction Model for Visualizations
Beyond The Desktop. IEEE Transactions on Visualization and Com-
puter Graphics, 19(12):2396–2405, Dec. 2013.

[15] Y. Jansen, P. Dragicevic, P. Isenberg, J. Alexander, A. Karnik, J. Kil-
dal, S. Subramanian, and K. Hornbæk. Opportunities and challenges
for data physicalization. In Proceedings of the 33rd Annual ACM Con-
ference on Human Factors in Computing Systems, pages 3227–3236.
ACM, 2015.

[16] Jodi. World wide wrong. http://nimk.nl/eng/world-wide-wrong, 2005.
[17] M. Klee. The long, twisted history of glitch art.

http://kernelmag.dailydot.com/issue-sections/features-issue-
sections/12265/glitch-art-history/, 2015.

[18] R. Kosara. The US ZIPScribble Map. 2006.
[19] R. Kosara. Visualization Criticism - The Missing Link Between Infor-

mation Visualization and Art. In Information Visualization, 2007. IV
’07. 11th International Conference, pages 631–636, July 2007.

[20] H. S. Manon and D. Temkin. Notes on glitch. world picture, 6:118,
2011.

[21] S. Mason. Glitched lit: possibilities for databending literature. In
Proceedings of the 2nd workshop on Narrative and hypertext, pages
41–44. ACM, 2012.

[22] R. Menkman. The glitch moment (um). Institute of Network Cultures
Amsterdam, 2011.

[23] R. Menkman. Glitch studies manifesto. Video vortex reader II: Mov-
ing images beyond YouTube, pages 336–347, 2011.

[24] Mike Bostock. Design is a Search Problem. OpenVis Conference,
2014.

[25] Mozilla Developer Network. SVG Attribute reference. 2016.
[26] S. M. Park. Tall Building Form Generation by Parametric Design

Process. Illinois Institute of Technology, 2005. Google-Books-ID:
YSAxHQAACAAJ.

[27] R. M. Roberts. Serendipity: Accidental discoveries in science.
Serendipity: Accidental Discoveries in Science, by Royston M.
Roberts, pp. 288. ISBN 0-471-60203-5. Wiley-VCH, June 1989., 1,
1989.

[28] R. C. Team and others. R: A language and environment for statistical
computing. 2013.

[29] R. Woodbury. Elements of parametric design. 2010.

	Introduction
	Parametric design process and glitches generation
	Glitches collection
	Collection Analysis
	Glitches reverse engineering
	More glitching
	Conclusion and perspectives

